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This paper explores emerging software architecture trends in the Internet of
Things (IoT), focusing on event-driven architectures, edge computing, and
containerization. It analyzes the benefits and drawbacks of each approach,
highlighting their impact on resource efficiency, real-time processing, and
maintainability while identifying key challenges in coupling, complexity,
and security.
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1 Introduction

Internet of Things systems combine aspects of embedded and dis-
tributed systems to form locally-aware, real-time, internet-connected
networks. These attributes have driven the rapid growth of vast
networks of interconnected devices in both industrial and consumer
settings that we now call IoT. [Statista 2025] estimates that by this
year there will be 20 billion connected devices (seen in Figure 1).
This rapid expansion raises questions. Are all these new devices
a huge security liability? Questions of opportunity arise as well.
Can real-time systems reduce latency by intelligently distributing
work within the network? And old assumptions are questioned. Is a
request-response architecture sufficient or is an event-driven one a
better fit?

Popular architecture trends offer answers to these questions.
An event-driven architecture proposes a more timely allocation
of resources than a request-response architecture. Edge computing
supposes it can decrease latency by pushing work to the edge of
networks. And containerization makes its claim as an easily orches-
trated deployment strategy with other advantages to boot.

This paper explores the benefits and drawbacks of these three ar-
chitecture trends, analyzing how they influence resource efficiency,
real-time data processing, and security in IoT systems. Specifically,
we examine:

e Event-driven computing: How does an event-driven ap-
proach enhance efficiency while managing trade-offs in data
persistence?

o Edge computing: What specific strategies does edge com-
puting offer to divide work in a network?

e Containerization: How does containerization’s implemen-
tation set it apart from competing deployment patterns?
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Fig. 1. Forecasted growth in number of loT connections (connected devices),
via Statista.

By evaluating these architecture trends, we aim to highlight key
challenges and opportunities in IoT architecture and identify poten-
tial directions for future research and development. The remainder
of this paper can be outlined as follows. Section 2 explains the vary-
ing demands of IoT use cases. Section 3 explains the components of
an IoT system. Sections 4 through 6 investigate event driven, edge
computing, and containerized architectures and Section 7 concludes
with a future direction.

2 loT Use Cases

10T systems have three primary use cases that are worth under-
standing because of the differing demands they create on system
uptime and data completeness. They are alerting, real time decision
making, and data collection.

Thanks to IoT, jet engines now have digital twins that help alert
when they need maintenance. Engine manufactures, who are paid
per mile for their engines need to predict when maintenance is
necessary and when it’s better to keep engines in operation. This
turns out to be a function of many characteristics including real
time data like the temperature and pressure experienced by certain
components. Digital twins keep track of this data and help tune
models that decide when certain engines get maintenance and even
run simulations that help them allocate resources for the future.
Consumer IoT alerting applications exist too, as in a smart watch
that warns of an impending cardiac event. A characteristic of these
systems is that they must be ready to alert at any times but do not
need to be in active communication at all times.

Thanks to IoT, many manual machines are now automaton, that is
capable of real-time self-operation. Electric grids face heavy strains
in the hot summer months, especially at peak hours when people
return from work. Smart thermostats can be programmed to cool
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homes before peak hours. Additionally, smart grids collect real
time demand information and adjust supply accordingly. Consumer
automaton exist too thanks to IoT. An insulin pump, for instance,
might decide when and how much insulin to deliver to its users
via algorithms that are tuned with data from millions of users. A
characteristic of these systems is that their decision making can
be improved by cloud processing of large data but the decisions
themselves must come rapidly and often that means locally.

And finally IoT supports data collection for as needed decision
making processes. Inventory numbers might be collected from vari-
ous distributed locations allowing a centralized decision maker to
make new orders as needed. A characteristic of these systems is that
a massive amount of data will be generated and should be parsed
so that only data relevant to decision making is kept.

3 An Overview of the loT System

This section explores the devices that compose an IoT system and
discusses the constraints these devices face.

Servers in a data center are powerful, but they are stuck in place.
They need nodes to collect data on the real world. Still, servers
are often too far away to act quickly on this data. What is more,
servers would often have trouble communicating with nodes with-
out translators that can understand both local protocols like MQTT
and internet protocols like HTTPS. We have thus described the es-
sential devices of an IoT system. Remote servers, often in the cloud.
Nodes that collect data. And edge servers, also commonly called
gateway devices because of their role translating protocols. The
cloud server is constrained because it is far away. The nodes have
minimal processing because of their low-spec chips and frequent
reliance on battery power. Some nodes are further constrained by
availability requirements because of their use in real time systems.
Edge servers have neither the extreme constraints of nodes nor the
extreme power of cloud servers and are geographically distributed
and co-located with nodes, a property that serves as both a con-
straint and an advantage.

In summary, an IoT system is composed of three layers of devices:
remote servers, edge servers, and nodes and these layers are subject
to different constraints that drive their need to for the solutions
offered by our three architecture trends. Each architecture trend
we discuss has applications for multiple layers of the system. To
illustrate, events can be sent between nodes and edges as well as
edges and remote servers. Similarly, edge computing can involve
pushing work from remote servers to edges or from edges to nodes.
And finally, containerization can be applied to both nodes and edges.

4 Event Driven

As described in IoT uses cases, alerting demands that a system be
always ready but not always on. An event-driven architecture can
be contrasted with continuous methods of sending and receiving
data, respectively data streams and continuous polling. In contrast
to streams, events send data intermittently. Less data is therefore
sent over the network. Sending less data may involve waiting for
significant changes, or processing data streams on nodes and send-
ing back processed data in events. We’ll discuss the strategies for
processing data on nodes in the edge computing section. Even if
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Fig. 2. Nodes, Edges, and Cloud: the devices of loT architectures

less data is sent, there is still enough data that a strategy needs to
exist for sorting data by priority. [Al-Osta et al. 2019] explains how
a semantic model similar to that used to classify terms on the web
can be used to classify the priority of events.

In contrast to continuous polling, processes waiting for data are
notified so they don’t have to continuously check. The CPU is then
released to do other work and an interrupt notifies it to go back to
the waiting process. Real time operating systems, like FreeRTOS im-
plement specialized task scheduling algorithms that help prioritize
the most important tasks. Unnecessary CPU cycles are avoided and
energy is saved. In contrast, a traditional multitasking operating
system gives the highest priority to jobs with the lowest demand
on the computer. In an IoT environment, the network processing
and energy savings owed to an event-driven system are immensely
valuable.

Event-driven architectures don’t stop there. Now that sending
and receiving processes are no longer in constant communication,
in other words, they are decoupled, the sending receiving relation-
ship no longer needs to be exclusive. Instead, event producers can
send messages to multiple event subscribers. This concept is closely
linked to the pub/sub pattern and other system decoupling patterns.
Consider a workflow for when a package is scanned on its way out
of a warehouse. The sensor could send an event to an edge server
that hosts containers for several subscribers. A UPS service will let
UPS know the package is on the way to their facility, a customer
notification service will let the customer know that the package has
left the warehouse, and an accounting process will keep track of
order status internally. When events are sent to multiple subscribers,
there are two choices for what information is shared. The event can
contain all the relevant information so that subscribers can act on
it right away or the event can contain the primary key which sub-
scribers can use to look up the rest of the data. Overstuffing events
with data only relevant to some subscribers is essentially coupling



the subscribers together. The primary key approach ensures that
events are decoupled but will be slower because several extra steps
are required to write and read data before the subscriber can act
[Microsoft 2025].

5 Edge Computing

As we’ve discussed some IoT uses cases demand real time deci-
sion making. Edge computing is the idea that processing should be
moved closer to the periphery of a network. This lets systems send
less data over the network and decrease latency. Edge computing
includes both moving remote server processing to the edge and
edge processing to nodes. When different layers of the network
have different owners, edge computing also increases privacy and
security. Federated learning is a particular flavor of edge computing
with privacy and security benefits. It works by training models from
node devices without nodes sharing raw data. A classic example of
federated learning, training a hospital’s heart monitors, reinforces
the idea that edge computing can be achieved at both the layer of
nodes and edges. In this system heart monitor nodes record data,
edge servers collect it, and remote servers apply learning models
to it. You can imagine that a model trained on multiple hospital
system’s data might do a better job of predicting an imminent heart
event but HIPAA requirements would obviously prevent such a
system. However, if federated learning were applied, heart monitors
could do an initial layer of processing, sending only time bounded
data around detected events and using anonymous IDs rather than
identifiable information. Edge devices could then do an initial level
of processing and send intermediate data back to the cloud to be
aggregated and processed further. [H. Li and Dong 2018] explains
how "it is very hard to understand the original information with the
features extracted by a convolutional neural network (CNN) filter
in the intermediate CNN layer". [H. Li and Dong 2018] Also explain
how this works by showing that the lower levels of a CNN can be
performed by edge devices and the higher level on cloud devices.

[H. Li and Dong 2018] also describes algorithms for distributing
processing among nodes in a network. This could take the form of
moving processing from nodes with limited battery supply to nodes
with significant power resources or using map reduce to divide pro-
cessing among a network of nodes [et al. 2018]. [B. Chen and Zhang
2018] describes real-time data fusion that allows industrial IoT de-
vices to communicate with each other to ensure that anomalous
readings are not acted on.

These optimizations are not without their tradeofts, division of
processing increases the complexity of applications and creates
distributed debugging problems that make root causes difficult to
nail down. Patterns and tools should be developed to manage this
complexity.

6 Containers

Containerization is a deployment strategy where applications run
partially isolated on virtual machine. Containers are isolated from
each other using Namespaces, Chroot, and Cgroups but still share
the host OS kernel of the virtual machine. Technically, there exist
both single application containers, called application containers,
and multi-application containers called system containers but our
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discussion will focus solely on application containers which are
both faster, more isolated, and more common [Gamess and Parajuli
2024]. In IoT, containerized environemnts can be contrasted with
firmware, bare metal, virtual machine, and unikernel environments.
Containers are created by layering an application’s dependencies
together to form an image that can be deployed. The first layer is
frequently a lightweight Linux distribution, which is deployed in
the container for its libraries, rather than its services. Remember,
the host OS is providing the OS services. This can be confusing since
a commonly stated advantage of containers is that they are lighter
weight than virtual machines. This is still true, since the minimal
need for operating systems in containers has allowed operating
systems for containers to be shrunk way down, for instance Linux
Alpine is around 5MB and BusyBox is 2MB compared to Ubuntu
at 188 MB [Christner 2025]. For most IoT systems, however, the
more important lightweight characteristic of containers is that not
running a second operating system reduces CPU and RAM. Relying
on the OS as a library allows it to get very small. After the base
layer, application dependencies, runtimes, and the app itself form
their own layers. Layers help reduce the footprint of containers
because shared layers can be reused between containers running
on the same machine.

Containers can be used on both IoT nodes and edges. They are
commonly contrasted to virtual machine deployments but since
this is IoT we’ll first discuss firmware on nodes. Firmware provides
low-level control over hardware, such as storage, input devices,
and peripherals. When a computer with an operating system is
turned on, a piece of firmware called the BIOS starts up another
piece called the bootloader that in turn starts the operating system.
When a firmware only IoT device runs, both the startup logic and
the application logic are stored within the firmware. Fewer layers
means fewer resources but what if a firmware update goes wrong.
Now you’ve broken the system that starts the machine, how do you
start up the machine to fix the problem? If a firmware update were
to require manual intervention, this would be especially difficult
in an IoT environment where devices can be distributed across
warehouses or in the control units of wind turbines. Today, there are
tools to safely rollback firmware updates like A/B deployments but
firmware updates are still considered riskier than software updates.
Additionally, firmware updates require rebooting the machine to
switch over to the new firmware whereas software updates like
those to containers can maintain continuous uptime using A/B
deployments.

Bare metal machines are computers with an operating system
running directly on hardware. They involve more overhead than
firmware because of the BIOS, bootloader, and operating system de-
scribed above but they are safer to update since their BIOS does not
need to be modified. Their direct interfacing with machine hardware
means that they are more performant than either virtual machines
or containers but that, like firmware devices, they cannot be cloned.
Cloning is a distinct advantage because it means an operating sys-
tem can be configured once and copied to all IoT devices in a fleet.
This is a distinct disadvantage in IOT, where a fleet can comprise
thousands of devices.
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Virtual machines run on a hypervisor that takes over hardware-
centric OS tasks like managing memory, time sharing a CPU, net-
work, and drivers. By abstracting hardware away, multiple machines
can now be run on a single bare metal machine and machines can
be cloned and deployed elsewhere. As discussed above, this is of
particular importance in an IoT setting. Each virtual machine is a
full operating system with their own kernel so multiple machines
on a single hypervisor are largely isolated from each other. Hyper-
visors do occasionally have vulnerabilities that expose one virtual
machine to another but they tend to be less common than operating
system vulnerabilities [Gongalves et al. 2025].

As described above, containers are partially isolated. Namespaces
and Cgroups create some isolation but as [Casalicchio and Iannucci
2020] points out, the reliance on shared OS services, in particular
the same network bridge is a hole in container isolation. Moreover
[Casalicchio and Iannucci 2020] says, "container isolation can be
lowered at launch time playing with specific settings". Despite this
incomplete security, containers popularity in cloud environments
has overflowed into increasing use for IoT edges and nodes. With
the growth comes an influx of new tooling, for instance, the energy
usage of containers can now be managed with DockerCap to en-
sure it is within the strict requirements of IoT devices [Asnaghi A.
2016]. And [Dolui and Kiraly 2018] show how the multi-functional
requirement of Iot Edge/Gateway devices make them a perfect can-
didate for multi container deployments to manage "discovery, data
management and cloud integration". Further, [A. S. Gaur and Lung
2018] show how DockerCompose supported there project to create
a multi-container IoT gateway capable of mobile handoffs, which
are necessary to pass the application state of mobile nodes between
gateways. Also working in the domain of service handoff, [Lele Ma
and Li 2017] showed that containerization can reduce service hand-
off time by 80% with network bandwidth of 5Mbps. Finally, [Watada
2019] shows in Figure 3 that a containerized solution (Docker) gives
the closest to native performance compared to virtual machines
(kvm, Xen), and unikernels (OSv, Rumprun). [Watada 2019] goes on
to say that with maturity, unikernels are expected to improve.

Execution time (in secs.) for following number of threads

[ | ! \ 2 [ 2 | 8 |

Native 11.21 11.30 11.25 11.27

ES1 &E82 &S1 ES2 &S1 &E82 &S1 &S2
Docker 19.35 31.32 19.33 31.37 19.34 31.67 19.36 31.39
0Sv 37.56 42.46 37.81 4271 37.72 42.52 37.63 4291
Rumprun 3591 40.21 35.82 40.35 3578 40.76 35.77 40.12
LXC 25.45 32.57 25.46 32.82 25.44 32.37 25.40 32.15
rkt 30.34 32.39 25.36 32.31 25.34 32.36 25.31 32.33
kvm 31.35 31.21 31.56 31.65 31.34 31.13 31.38 31.32
Xen 3132 31.12 31.43 31.27 31.56 31.41 31.48 31.24

Fig. 3. CPU performance comparison between native, containers, virtual
machines, and unikernels, via Watada2019.

Unikernels are minimalist virtual machines that, like virtual ma-
chines, run directly on hypervisors. They offer the same level of
isolation as virtual machines but achieve the lightweight attributes
of containers. As a consequence of stripping down the OS, uniker-
nels tend to moot extremely fast [Watada 2019]. Unikernels are a
natural progression from containers. If applications are now run in
single-tenency environments, then why pay the overhead cost of
multi-user memory spaces and the time sharing. Pairing down these
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features of operating systems leads to much smaller memory foot-
prints, a few MB, instead of hundreds of MB. The LynxOS unikernel
has been used in high-performance and low error tolerance envi-
ronments like fighter jet cockpit software. However, unikernels are
a developing technology and [Talbot et al. 2020] shows that some
distributions have not yet implemented basic buffer overflow protec-
tions or address space memory randomization. Finally, unikernels
lack the wealth of tools to build, configure, and deploy that contain-
ers and virtual machines have. Nonetheless, recent work to show
how the Linux kernel can be made unikernel friendly shows that
unikernels may see continued growth [Raza et al. 2019].

Given the deployability and relative performance benefits of con-
tainerized applications, despite their security concerns, they should
be seen as the de-facto environment for edge gateways and node de-
vices in IoT. When deployability is not a concern, native/bare-metal
environments offer the best performance and unikernels should be
monitored for future application.

7 Conclusion and Future Direction

This paper covered three architectural trends in IoT systems. Event-
driven architectures were shown to be effective means of reducing
network and processing. Edge processing was shown to have ap-
plications in allocating processing between, as well as within, IoT
layers. And containers were shown to be the go-to choice for IoT
application deployments. Future research should focus on expand-
ing the applications of event-driven architectures from IoT alerting,
and training to real time decision making. Additionally, it should in-
vestigate patterns for managing the complexity resulting from edge
computing. Finally, security improvements to containers should be
investigated alongside performance optimizations for unikernels.
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