
Architecture Project
System: GitLab
Date: 2025.03.14
Andrew Steiger, Greg Atamian, Reed Klaeser

Table of Contents

Introduction .. 4

Purpose ... 4

Scope .. 4

Audience/Stakeholders.. 4

Glossary of Terms ... 4

Overview of Requirements .. 6

Functional Requirements ... 6
Organizational Process Requirements .. 6
Control Requirements .. 7
Flexibility Requirements ... 7

Non-functional Requirements ... 7
Modifiability ... 7
Availability .. 8
Integrability .. 8

Use Cases .. 8

CI/CD Deployment ... 8

Scalability ... 9

SSO Authentication .. 9

Context Diagram ... 10

System Quality Attributes ... 11
Modifiability ... 11
Availability .. 11
Integrability .. 12
Scalability .. 12
Distributability/Deployability .. 12

Quality Attribute Scenarios ... 12

Modifiability Requirement (NFR2) ... 12
Tactics to Satisfy Modifiability .. 13

Availability Requirement (NFR3) ... 14
Tactics to Satisfy Availability ... 14

Integrability Requirement (NFR5) .. 15
Tactics to Satisfy Integrability ... 15

High Level Architecture ... 16

Key Components ... 16
AlertManager (Prometheus Tool) .. 16
Gitaly.. 16
GitLab Shell .. 16
GitLab Workhorse .. 17
Grafana (Prometheus Output) .. 17
Jaeger (Prometheus Input) .. 17
NGINX .. 17
PostgreSQL .. 17
Prometheus ... 17
Puma (Gitlab Rails) ... 18
Redis .. 18
Runner ... 18
Sentry (Prometheus Input) .. 18
Sidekiq ... 18

GitLab High-Level Architecture Diagram ... 18

Identification of Dominant Architectural Styles ... 19

Core Component - Gitaly .. 20

Core Component - Internal Data Management .. 21

Core Component - Data Storage ... 21
Core Component - Monitoring .. 22

Explanation of Quality Attributes and Architectural Drivers Supported by the Architecture 23

Contrasting GitLab Architecture with a Microservices Architecture 24

Limitations of GitLab Architecture .. 25

Scalability ... 25

Addressing Possible Approaches to Solving Scalability ... 25

Federated Model .. 26

Addressing Possible Approaches to Solving Data Federation ... 26

Appendix I: Case Study ... 26

Appendix II: Proposals for Extension of Gitlab ... 29

Appendix III: Evaluation of Architecture Risks and Trade-offs 30

Appendix IV: References ... 31

Introduction
In this section we introduce our system, describe its purpose, outline its relevant

scope, and identify its audience.

Purpose
GitLab Community Edition (GCE) is an open-core end-to-end software development

platform primarily developed by the company GitLab. GitLab Community Edition (GCE),
hereafter GCE, aims to comprehensively address development needs by providing version
control, issue tracking, code review, CI/CD, and more.

Scope
To ensure appropriate depth in the face of so many features we have chosen to focus

this architecture review on the relevant components involved in tracking, building, testing,
and deploying code in a traditional server environment. We also discuss issue tracking and
code review features or explore the flexibility to deploy code to containers or serverless
environments. Additionally, while a GitLab system could be configured with multiple GCEs
for high availability, the system we discuss will have only one. Should we find that discussing
other functionalities becomes necessary or informative we’ll expand the scope in turn. An
organization deploying code with the GitLab system, hereafter GitLab, will have GCE running
on one machine and GitLab Runners on the machines being deployed to. Even though it is a
different open-source application than GCE, we’ll include GitLab Runners in our discussion
for completeness. The GitLab system we have chosen to scope our project to orchestrates
critical tasks over a network that ultimately allows developer changes to reach end-users.
As we discuss later, the Quality Attributes and Requirements that must be met to make this
happen include many of those we have discussed in class. We chose to investigate GitLab
not only because it is large enough to support relevant discussions but also because it is a
very well documented system.

Audience/Stakeholders
GCE’s relevant audience includes developers whose changes are deployed through

the system, technical leaders who manage these changes, technical administrators who
manage the system, the quality assurance team responsible for validating the overall and/or
individual quality of changes, and business administrators associated with the changes.
Together these stakeholders represent the continued relevance of tracking software
changes from ideation to ultimate delivery.

Glossary of Terms
• A/B testing - Exposing two versions to a customer and recording which they

respond better to.

• Batch processes - Processing data in a single go rather than in real-time, often
scheduled

• CI Trace Chunk - A detailed recording of a process occurring within the CI pipeline,
with a defined start and stop time.

• Code Review - A process where software developers review each other’s changes
to code prior to those changes being deployed.

• Container - Operating system level or application-level virtualization environment
• Continuous Integration and Continuous Deployment (CI/CD) - A process of

deploying code changes frequently and reliably. Continuous Integration refers to an
automated process of introducing code changes to a code base, and continuous
deployment refers to an automated process of deploying those changes to different
environments.

• DevOps - A practice which marries software development and business operations
into a single effort. When followed, practitioners hope to improve the performance,
efficiency and security of their software development and delivery.

• Feature flags - Toggles that allow enabling or disabling features in code without
changing the code. This allows behavior to be toggled in production without a new
deployment.

• HA high availability - Elimination of single points of failures with the goal of
operating with minimal downtime.

• HTTP/HTTPS - Protocol for sending data over the network. HTTPS is the encrypted
version where the S stands for secure.

• IPC – Inter-process communication is a way for processes on a machine to
communicate

• Issue tracking - The process of recording and managing issues such as bugs or
features that must be developed

• Kanban - A work management system using boards to represent the progress of
tasks through a workflow

• Kubernetes - A container orchestration platform that automates the deployment,
scaling, and management of containerized applications.

• Git - A version control system
• GitLab - Used to refer to the system inclusive of CE and Runner. A tool for

developers to implement code changes via CI/CD and DevOps
• GitLab Community Edition (GCE) - The GitLab management instance
• Gitlab Runner - Process that handles jobs within a pipeline
• Pipeline - Composed of various tasks that promote code changes through various

testing environments and ultimately to the production environment.
• Privileged User - These users represent a minimal subset of the contributing

business user base. They are expected to have a high understanding of the system
and what is described and proposed as required in this document.

• Ruby - High-level general-purpose programming language
• Ruby on Rails - Server-side web application framework
• Semantic Versioning - Convention of assigning unique version numbers to software

according to the significance of changes between versions

• SMTP - Protocol for email transport
• systemd - A software suite for Linux providing several system components,

especially service configuration.
• TCP/IP - Provides reliable, ordered, error checked delivery of data over the network.
• Virtual machine (VM) - An operating system abstracted to run on a hypervisor as

opposed to directly on hardware.
• YAML - A human readable serialization language used for configuration files

Overview of Requirements
The main function of GitLab is to provide a full environment for developer teams to
collaborate on translating business requirements into deployed end-user
applications. Although there are various plugins and modules available to accomplish this
end goal, we consider in this documentation a base case for functionality. To this point, the
requirements listed within revolve around standard code base management with
Continuous Improvement pipelines, as well as deployment and testing via Continuous
Deployment pipelines.

Functional Requirements

Organizational Process Requirements

Key GitLab Native Components: Rails/Puma, GitLab Runner, Sidekiq, Gitaly

OPR1 - The system shall provide methods for Continuous Improvement, where a developer
or contributors to the code base are able to commit code changes to a respective
repository. After peer review of code, these changes propagate the CI pipeline in a
completely automated fashion and are verified in various testing environments before
ultimately being prepared for deployment to a production environment.

OPR2 - The system shall provide methods for Continuous Deployment, where tested builds
from the CI pipeline are able to be deployed to further testing and production environments,
in a completely automated fashion.

OPR3 - The system will maintain work items used to describe business requirements, via
Kanban board or similar manner. Assignment of work items will be to single sign on identity
used in other aspects of the system.

OPR3 - The system will maintain code bases in repositories and utilize git standard
commands to maintain this code base. Git authentication will synchronize with the single
sign-on identity used in other aspects of the system.

Control Requirements

Key GitLab Native Components: Rails/Puma, GitLab Shell, Sentry

CR1 - Users of the system will be presented with recovery actions such as manually
stopping, starting and retrying pipeline tasks. These users will be able to rollback versions
of the deployables due to compilation or testing errors that resulted from merged code.

CR2 - The components will be configurable beyond the development stage, to incorporate
changes at runtime, without the need for redeployment. A common abstracted interface will
be provided with the executables to implement these changes.

CR3 - The system will be accessible remotely and securely by the code
contributors. Communication between parties will be completely attainable through
common components provided by the system.

Flexibility Requirements

Key GitLab Native Components: GitLab Runner, Sidekiq, PostgreSQL, Redis

FR1 - The technical components of the system will be flexible enough to allow for alternate
platforms, such as database providers, or version control vendors.

FR2 - The system will allow the introduction or replacement of entire components, of varying
size. This may include vendor or third-party components, new components required to
satisfy new functionality (such as a new microservice, data source, UI). The system will be
designed to grow its user base.

FR3 - Components of the system such as the GitLab Runner, or the Postgres Databases, will
be easily distributed to alternate locations as needed. This will allow encapsulating the
responsibilities of the underlying GitLab hardware.

Non-functional Requirements

Modifiability

Key GitLab Native Components: GitLab Runner, Sidekiq

NFR1 - During the Continuous Integration phase of code change, developers and code
contributors must be able to merge code into shared branch repositories, where branch
versioning prevents change collision, and exactly one new version tag is created with each
single merge of a code branch.

NFR2 - Privileged users will be able to modify and configure the pipeline through the same
mechanisms as described in NFR1 for Continuous Integration, to adjust the
infrastructure. These changes encompass deployment strategies, scaling infrastructure,
changing the location of components, adding and removing infrastructure etc. These
changes will reflect in newly automated CI build tasks within 20 seconds of the changes
being made.

Availability

Key GitLab Native Components: Rails/Puma, GitLab Shell, Sentry

NFR3 - The system will monitor and be aware of faults that occur in the pipelines. Users of
the system must be able to quickly identify the health of the system, identify artifacts that
are at fault, and compare cycle-time, with respect to all stages of the pipeline. These
identified faults will be refreshed or made available to the UI within 2 seconds of detection.

NFR4 - Faults in the system will be clearly described and logged, defining at minimum the
stage in the pipeline where it occurred, the time that it occurred, and the components
directly affected. Appropriate parties will be notified via messaging such as email or
notifications with these descriptions. The reported timestamp of the logs generated will
deviate no more than 500ms from the time of the actual event.

Integrability

Key GitLab Native Components: GitLab Runner, Sidekiq, Gitaly

NFR5 - The components of the system will adopt a standard versioning mechanism to track
changes to the code base over time. The version will be unique to the component, and
testing of cross component version compatibility will be performed at the appropriate stages
needed to ensure expected functionality. Semantic versioning will be enforced, and MINOR
and PATCH versions will not exceed a value of 99 before a bump to the higher-level value is
made.

Use Cases

CI/CD Deployment
 This use case defines the most standard application of GitLab, to deploy or change
an application via changes made by a code contributor.

Figure 1 - Use Case Diagram

Contributors merging new code into the code base should automatically drive build

and test processes in a development environment. Successful completion of tasks in the
development environment should automatically trigger deployment into an integration
environment and run integration and system tests. Successful completion of integration
environment testing should result in an executable automatically deployed to a staging
environment where tests are run with production-like data. Successful completion of
staging environment tests should result in deployment to production.

Scalability
GitLab GCE can scale to meet the needs of organizations. For instance, though GCE

ships configured to run one Redis instance configuration changes to the following files
config/redis.yml, config/application.rb, config/sidekiq.yml can partition the Redis caches
according to the type of state being stored. If a company found themselves deploying to one
thousand instead of ten servers, the ability to scale Redis could prevent bottlenecks from
high read/write traffic due to caching or job queues. Similarly, Gitaly (git store) or Sidekiq
(background job processing) can be scaled with configuration files alone. In addition to these
configuration changes, each new resource must be provisioned. We discuss this limitation
and the limitation of relying on virtual machines rather than containers at length in the
Limitations of Architecture section.

SSO Authentication
Applications, especially those like GitLab that contain intellectual property and are capable
of breaking production systems, should be properly secured to effectively prevent
unauthenticated access. Furthermore, they should give administrators the ability to choose
the system that authenticates users, configure role-based access control, and create a
paper trail of actions taken by authenticated users. The system should provide these
features in a way that increases Usability.

• The user will authenticate once into the GitLab instance via Puma.

• This single identity will persist for all git operations and for tracking purposes within
the application. In this way, code changes, pipeline task creation, and other system-
wide actions will track whom the change was requested by.

• Usability will benefit from pairing fault tracking with the identity of the user(s)
involved.

• Administrative users are designated to handle critical actions and configuration.
• A single source for authentication (Gitaly) will provision temporary access tokens for

use with a user’s session.
• Usability of the application will benefit from this single authentication method, which

can be used for access to the entire application.
• When access tokens expire, the user should be redirected to the single sign-on page

to reauthenticate.
• Elasticsearch will have access to all user data stored in a single Postgres Instance, to

provide search results based on a user such as the individual’s code changes, or work
issues completed.

Context Diagram
We’re interested in the GitLab system responsible for tracking, building, testing, and

deploying code. This system allows changes made by developers to manifest into newly
deployed executable code for customers to interact with in Production. Code changes are
made by developers who use a git client to check in and out code stored on the management
server. Depending on the organization, developers might also make configuration changes
to GitLab or those may be left to administrators. GCE is responsible for managing these
functions and for orchestrating the performance of relevant build and deployment work.
Interfacing with the GitLab Runners on build, test, and production servers, runs what are
called CI/CD jobs that perform the work of building and migrating code. GCE is a Ruby on
Rails application that is typically configured to run on its own management server. GitLab
Runner, hereafter Runner, is a Go application that runs CI/CD jobs and sends the results
back to CE. Developers or administrators may view the results of CI/CD jobs as reported by
GCE through their clients. GCE serves the web pages that developers and administrators
view using a Puma application server. Frequently code is deployed and tested in test
environments prior to being deployed to production. Testing strategies will vary but CI/CD
jobs can be arranged sequentially so that changes are verified in test environments prior to
being deployed to production. Once code is deployed to production users will be served the
new code. It should be noted that production can be anything, an ecommerce website or
even an internal backend system.

Figure 2 - Context Diagram

System Quality Attributes

Modifiability

A key to success for the system is its modifiability, as the system is designed to
manage frequent code changes to multiple applications through continuous
development. The technologies that development teams use is dynamic in nature, as is the
architecture design that determines the components and connectors within the
system. Transitively, this requires that the platform for managing code change, testing and
deployment (GitLab), be just as flexible if not more. Among the requirements that result in
the need for modifiability include changing entire components and structures and changing
entire frameworks and platforms.

Availability

GitLab as a system will generally accommodate many users as well as types of users,
who all work concurrently on multiple projects. The actions of these users will often initialize
automated scripts to run, create new downstream tasks, or run entire workflow pipelines to
a deployed environment. With a potential multitude of users, tasks and applications, a
system with high Availability is imperative. Requirements that illustrate this consider the
monitoring needed for a system of this variety, the administrative actions that can be taken
on these work streams, and the detection of faults that may occur in any of the mentioned
processes.

Integrability

The system needs to be able to easily incorporate change not only within the
applications that are developed with the use of the system, but also for the system
itself. Gitlab is composed of various open-source modules, developed by different teams,
and often not exclusively for use with GitLab. The orchestration of updates, for these internal
elements as well as system elements, needs to be clear and indefinitely possible. Standard
Connector components should be in place to facilitate this change as well as options for
configuration, to ensure that the system is correctly collaborating.

Scalability

Closely tied to the Availability and Modifiability of the system, the ability to increase
or reduce resources is deterministic to the systems success. To handle frequent requests
for change from the business, it must be considered that the infrastructure should be flexible
enough to handle large changes with ease. It should be able to handle several new services,
applications, storage devices and users. Conversely, the system should just as easily be
able to de-register unneeded resources on command.

Distributability/Deployability

The nature of a Continuous Improvement/Deployment management system requires
in the modern age that portability and distributional transparency be incorporated. The
dynamic stakeholders or users of the system, as well as the dynamic components of the
system, should have transparent communication regardless of location or even knowledge
of a specific host or platform. Each element and cohesive concept should be encapsulated
to achieve this. An example of this within the system would be the ability to update database
versions, change a database location, change the underlying platform, or increase the
database redundancy, without users noticing change. Satisfaction of this quality is arguably
the core of satisfying other quality attributes previously mentioned.

Quality Attribute Scenarios

Modifiability Requirement (NFR2)
Privileged users will be able to modify and configure the pipeline through the same

mechanisms as described in NFR1 for Continuous Integration, to adjust the
infrastructure. These changes encompass deployment strategies, scaling infrastructure,
changing the location of components, adding and removing infrastructure etc. These
changes will reflect in newly automated CI/CD build tasks within 20 seconds of the changes
being made.

Source

System Administrators, Special access users.

Stimulus

Starting/stopping the pipelines. Adding/modifying/removing pipeline tasks, pipeline
order of operations, pipeline infrastructure locations.

Artifacts

The literal pipelines and tasks performed as part of a run. The configuration of
pipelines and their tasks. Larger categories of tasks including those used for all types of test
cases, those used for dependency management and verification, those used for building
executables, those used for notification of pipeline status etc.

Environment

Changes can be made at runtime or downtime of a pipeline. In any logical
environment starting with the CI Develop environment, but will likely apply to Integration/QA,
Staging, and Production.

Response

Changes to pipelines and/or tasks are immediately visible for the next run, or current
run is modified in the expected way such as skipping a task or stopping the pipeline.

Response Measure

The Response is apparent to the user within 20 seconds of the directive being issued.

Tactics to Satisfy Modifiability

Component Replacement

This is implemented at compile time or build time, early in the module lifecycle. The
pipelines and their associated tasks are defined completely by scripts written in YAML i. The
various files reference commands used to perform the tasks and are declarative in that a
high-level file may reference a task to run which exists in another file. The YAML files contain
global keywords (variables) that can be used within any YAML file of a pipeline, which can be
passed to downstream pipeline file sets with “include:<type>:<reference>” syntax. These
files are stored in a repository or branch just as code is stored. A privileged user committing
changes to these files triggers reactive updates in the UI when valid changes are made.

Configuration-Time Binding

This binding occurs typically at deployment, startup time, or initialization time, late in
the module lifecycle. These parameters are used within the applications themselves to
specific key values such as topics the application will publish to, or conversely subscriptions
the application will listen to. They may contain configuration for feature flagsii to promote
A/B testing or rollback of code paths as needed. Additional configurations that would be
applied at startup would include relevant hostnames, upper and lower limiting parameters,
etc. If needed, a centralized system could be implemented to issue these values so that
changes could be made at runtime and implemented via backdoor. This late module
configuration is often the most effective, but with a tradeoff to additional upfront
development time.

Availability Requirement (NFR3)
The system will monitor and be aware of faults that occur in the pipelines. Users of

the system must be able to quickly identify the health of the system, identify artifacts that
are at fault, and compare cycle-time, with respect to all stages of the pipeline. These
identified faults will be refreshed or made available to the UI within 2 seconds of detection.
Key GitLab Native Components: Prometheus, Grafana, GitLab Exporter, Node Exporter,
Redis Exporter, Alertmanager

Source

Software and software infrastructure, physical infrastructure.

Stimulus

An incorrect response from a pipeline task, incorrect timing of an expected task.

Artifacts

The pipeline tasks and the subsequent actions that result from the task completion.

Environment

Normal operation, all stages of the pipeline run.

Response

Notification of faults is handled to predetermined users, based on configured
relevance. This may include logs, UI notifications, email etc.

Response Measure

No more than 2 seconds elapses from when a fault is detected or a threshold is
breached, before notification of the relevant parties is completed.

Tactics to Satisfy Availability

Detect Faults - Monitor, Heartbeat, Exception Detection

The broad coverage of detecting faults is available in the system. Monitors are
assigned to deployed containers and storage systems. Heartbeat messages are sent to a
monitor from deployed instances, even if they are deployed in a separate environment such
as Kubernetes, via defined interfaces and protocolsiii. System exception detection is built
into code to determine if timeouts have occurred, or abnormal instructions have been
received. The various methods of detecting faults should result in immediate notification via
logs, or a message sent to an operator, based on relevance.

Recover from Faults - Redundant Spare, Rollback, Exception Handling, Retry

Mechanisms are in place to create redundant clones of elements. In the case of a
fault in an application or overload of its resources, load balancing should route requests to
a spare. If startup of an application with new changes or versioning occurs, this redundant
spare mechanism should allow for rollback to a previous version that is known to function
correctly. Exception handling within messaging such as HTTP requests, will contain
exception classes to identify pre-meditated error codes that occur such as resource Not

Found, or Unavailable. Transient faults will implement retry logic within reason and should
report when this limit has been exceeded iv.

Integrability Requirement (NFR5)
The components of the system will adopt a standard versioning mechanism to track

changes to the code base over time. The version will be unique to the component, and
testing of cross component version compatibility will be performed at the appropriate stages
needed to ensure expected functionality. Semantic versioning will be enforced, and MINOR
and PATCH versions will not exceed a value of 99 before a bump to the higher-level value is
made.
Key GitLab Native Components: Gitaly, GitLab Shell, GitLab Workhorse, GitLab Registry,
GitLab Rails, GitLab Runner

Source

GitLab Release Manager

Stimulus

A GitLab Release Manager begins the monthly release process for an independently
versioned component of GCE by releasing a new version to the first test environment.

Artifacts

The code environment is the artifact which is acted on by receiving the latest version.

Environment
The status of other components is a relevant environment attribute. For instance, a new

version of another component may end up having unexpected interactions with the component in
question. How production-like the test environments are is also relevant. For instance, test code
environments frequently experience less load than production environments which could cause
performance issues to be missed.
Response

Automated integration tests based on version numbers of each component run,
creating the regressions needed to understand integration issues.

Response Measure

No more than 30 minutes of human intervention is needed to run and interpret the
results of automated integration testing between GCE components.

Tactics to Satisfy Integrability

Not all GCE components are developed by Gitlab. Those that are (mentioned above
in Key GitLab Native Components), are independently versioned and are released on the
22nd of each month in the manner described in the Quality Attribute Scenario above. We are
not sure of the exact Response Measure used within GitLab, but it is clear from their release
documentationv that the process of testing new versions is highly automated and
approximates the process of little human intervention we described. GitLab employs the

following tactics, all of which work towards this Quality Attribute Scenario and the overall
goal of integrability.

Limit Dependencies - Encapsulate, Use an Intermediary, Adhere to Standards

GCE components are encapsulated using private public protections. Take for
instance GitLab Shell, which is written in Go, a programming language where lowercase
functions are treated as private and uppercase functions as Public. Public shell functions
like New()vi are exposed and private shell internals like validate()vii are protected.

GCE does use an intermediary in the form of GitLab Workhorse, a reverse proxy, but
its intention is more to relieve load from the Puma application server than to limit
dependencies. It does, nonetheless, have the effect of limiting dependencies since requests
like those from GitLab Shell or client web requests are funneled to Workhorse before being
passed to Puma, Redis, or Gitaly.

Adhering to standards like those for semantic versioning described in NFR5 helps
both automated and manual processes identify the correct software versions. This is
essential in deploying the right code or identifying problematic changes. See the release
documentation link above for a description of GitLab’s standards policies.

High Level Architecture

Key Components

AlertManager (Prometheus Tool)

This tool handles alerts from various client applications, including Prometheus, to
deduplicate, group and route these alerts to the respectively configured entity. This may
include an email, or countless additional implementations which are made possible by a
webhook receiver. Grouping alerts will in practice achieve results such as taking multiple
alerts from identical instances of a service and grouping this as a single alert with references
to each instance. It contains inhibition logic to repress alerts that are deemed unnecessary
if other alerts are already firing. Silencing of alerts is also configurable through the web UI
for periods of timeviiiix.

Gitaly

Is a core data remote procedure call service used by Gitlab to read and write Git data.
Implements client-server architecture. A Gitaly client is any node that runs a process that
makes requests of the Gitaly server. Gitaly clients are also known as Gitaly consumers and
include the Gitlab rails application, Gitlab shell, and Gitlab Workhorse to name a few.

GitLab Shell

Responsible for handling Git SSH sessions for Gitlab and modifies the list of
authorized keys. Gitlab Shell provides a limited set of predefined Git commands. Example
use case is shown belowx.

Figure 3 – Authentication and Authorization Flow

GitLab Workhorse

GitLab Workhorse is a program designed at GitLab to help alleviate pressure from
Puma. It acts as a reverse proxy used between GitLab Shell or the web client, to funnel
requests to Puma, Redis, or Gitalyxi.

Grafana (Prometheus Output)

Grafana is, at its core, a web UI for displaying real time data in graphic visuals within
dashboards. It is highly customizable and integrates with a multitude of data
sources. Within GitLab, it handles display of metrics collected by Prometheus which is
centered around performance monitoring of the systemxii.

Jaeger (Prometheus Input)

Jaeger was initially developed by Uber Technologies but is now open source. It
provides a distributed tracing pattern within the GitLab system by using additional patterns,
such as pairing a request ID with a log, to aid in monitoring and collection of important
metrics such as message latencyxiii.

NGINX

Webserver that routes requests via HTTP for distributed systems. Additionally, it acts
as a reverse proxy, content cache, load balancer, and SMTP mail server among other
responsibilities. It connects various functionalities such as authentication, deployment,
logging, and configurations for request distributionxiv.

PostgreSQL

Used for both authentication of users from user information storage, as well as for metadata
storage. Leveraged when using Gitlab shell for authentication and allowing users access to
the subset of Git commands that Gitlab offers.

Prometheus

Prometheus provides a server which is capable of handling alerts from various
configured sources, as well as system monitoring. From the official documentation, “It
collects metrics from configured targets at given intervals, evaluates rule expressions,
displays the results, and can trigger alerts when specific conditions are observed.” An
interesting aspect of Prometheus is that it uses a multi-dimensional data model, meaning
that it joins the concept of a time-series database with key-value pairs or relations from a
relational database. It acts as a central authority for alert collection and feeds these alerts
to dashboarding or UI tools such as Grafanaxv.

Puma (Gitlab Rails)

Puma is a Ruby application server that is used to run the core Rails Application that
provides the user facing features in GitLab. Often this displays in process output as bundle
or config.ru depending on the GitLab versionxvi.

Redis

Used for Caching (mostly via Rails.cache), as a job processing queue with Sidekiq, to
manage the shared application state, to store CI trace chunks, as a Pub/Sub queue backend
for ActionCable, rate limiting state storage, and storing session information. Every
application process is configured to use the same Redis server and can be used for inter-
process communication when PostgreSQL isn’t as appropriatexvii.

Runner

GitLab CI/CD is the open-source continuous integration service included with GitLab that
coordinates the testingxviii.

Sentry (Prometheus Input)

Sentry is used to collect application-level logs, with the primary goal of aiding
developers to detect issues. It is applicable to a multitude of programming languages and
has API interfaces to collect programmatic logs in real-timexix.

Sidekiq

Sidekiq is a Ruby background job processor that pulls jobs from the Redis queue and
processes them. Background jobs allow GitLab to provide a faster request/response cycle
by moving work into the backgroundxx

GitLab High-Level Architecture Diagram
 GitLab is a highly configurable system but has a consistent set of core contexts. A
typical user interaction is through web browser access, or via SSH. Web browser access
allows the user to perform the common tasks of creating “Issue” cards, modifying git
repositories, and a multitude of pipeline management functions. SSH communication
allows users to authenticate to the system to perform similar functionality, via GitLab
CLI. Below is a high-level representation of the system architecture, and the typical usage
flow through the application. Further detail of how the various components is connected
and their use is provided in reference XXIV. It should be noted that GitLab is a vast and
dynamically incorporated system, that fits several use cases. In the various depictions of
the architecture or sub-architecture that are shown, variations always exist based on the
goals of the implementers.

Figure 4 - High Level Architecture

Identification of Dominant Architectural Styles
GitLab provides a highly configurable open-source solution for CI/CD. The core

functionality of GitLab can be optionally enhanced by independent plug-ins, to provide not
only replication of services, but also net-new functionality. In other words, a typical
microkernel architecture.

The microkernel architecture, with a modular core system, is the general concept that
GitLab most exhibits. There exist multiple core systems that typically remain statically
defined, and various (often optional) plug-in components. The domain functionalities

revolve around Monitoring, Internal Data Management, the Code Repositories, and Data
Storage. Within the details of these components exist a multitude of architectural patterns
that’s bounded only by the available open-source options available. This highlights one of
the key benefits of GitLab, that updates can be made, and components can be added and
removed, affecting isolated core sectors of the system. Note that components shown in the
proceeding figures connected to domain components do not represent the domain
capabilities in their entirety. A selection was made to illustrate primary capabilities. GitLab
can be modeled in various methods for discussion, and a complete component diagram is
available via the official documentation in reference XXIV.

Figure 5 - Architecture Style

Core Component - Gitaly
 The Gitaly server is the single source of access to the git repositories, which make up
the development process of the resultant applications. Git authentication is handled by
Gitaly, and uses LDAP to authenticate the user once, into the entire GitLab system. Once
the user is authenticated, their identity is used to authorize access to various
functionalities. There exists normally admin and standard user types. As mentioned,
access from either users or services within GitLab to the git repositories goes only through
Gitaly. Gitaly uses Remote Procedure Call (RPC) communication to provide access to the
repositories to these various clients. The repositories themselves are only modified by
Gitaly, which references each by their unique path within the system. Overall, Gitaly
provides standardized interfaces to allow for the addition of new users and services within
the system. Likewise, the network location of repositories is a generally abstract interface

Figure 6 - Core Component: Gitaly

Core Component - Internal Data Management
Considering internal data management as core component, Redis is the primary

manager. A single PostgreSQL database is used within this core component for data storage
internal to GitLab. The Redis server uses TCP sockets with a generic server-client protocol,
which allows clients to modify or query data structures in a shared way. The memory used
for database operations as well as the data structures themselves, exist on the Redis
server. GitLab primary use cases for Redis include session storage, temporary cache, and
background job queues. It handles background job queues for the multi-threaded processor
Sidekiq, storing them until they are dequeued. With simple TCP/IP connect ability, it stores
shared session state with various stateful services. For ActionCable, the Rails backend and
frontend WebSocket manager, it publishes updates with shared data changes to clients on
the receiving end of the WebSockets.

Figure 7 - Core Component: Redis

Core Component - Data Storage
 The data storage module of GitLab, utilizes very standard protocols to connect
various data stores to the system. The context of these data stores is files, images,

repositories and other potentially large resources of the system. MinIO is an object storage
server that provides high performance buckets with various additional featuresxxi. GitLab
can also use NFS to store persistent data on any number of storage devices. Elasticsearch
is a distributed search and analytics engine that integrates with the storage systems within
GitLabxxii.

Figure 8 - Core Component: Storage

Core Component - Monitoring

The monitoring engine Prometheus utilizes abstract interfaces that allow various
opportunities for logging and acts as a generic alert and metrics manager for various
deployable containers. Not only are the input requirements genericized, but more
impressively, the output is open for implementation. Typically, a GitLab instance is paired
with Grafana for time-based graphical dashboards but, with a generic HTTP PULL model for
querying the data, Prometheus as a core component is also configurable for various
additional targets. The ability to push alerts based on met conditions is also widely used in
GitLab with Alertmanager, which utilizes batch processes via an intermediary gateway. In
perhaps the most generic sense, a TCP/IP listener can be connected to receive near real-
time updates and display them in popular platforms such as Splunk.

Figure 9 - Core Component: Monitoring

Explanation of Quality Attributes and Architectural Drivers
Supported by the Architecture
 The core components that make up the main functionality of GitLab are essentially
required for the system to operate for its intended purpose, but the modifiability that it has
been designed with give a large flexibility to the implementers to experiment with plug-in
style components that are even unprescribed by the original architecture. Generic interface
contracts are especially prevalent, common protocols such as TCP/IP, and various client-
server communication standards such as publisher/subscriber. This presents a system that
is adaptable to future needs and adaptable to present day requirements.
 A typical microkernel architecture is packaged with a set of “plug-ins” and available
as a single package. Though GitLab can be built directly from source code, it offers
purchasable editions that come with various sets of extended features which are pre-
configured out-of-the-box. For example, considering the components listed above, only a
purchased edition from GitLab.com compared to a source installation will include an
installed and pre-configured Alertmanager, Grafana, Prometheus, MinIO, Sidekiq, Runner,
Redis, Puma, Gitaly and Elasticsearchxxiii. The minimum functionality to run the system is
quite small.
 A great benefit of this architecture style is that various teams can contribute work to
solve gaps and vulnerabilities in the system. Being a completely open-source code system,
this means countless minds can contribute to components without disrupting not only large
contextual domains, but other inter-domain subsystems. Each plug-in component has its
own repository and authors and is compiled into a distributable package for GitLab (and in
many cases, other frameworks). The harmonization of the system can be literally visualized
by the UI presentation layer, Puma. Without delving into the architecture, the user view has
architectural transparency to the massive list of features that GitLab provides.

Contrasting GitLab Architecture with a Microservices Architecture
In the previous section we identified GitLab as a microkernel architecture, with a

modular core system and pointed out the extensibility benefits of such a choice. In our use
cases section, we discussed how configuration changes allow components within GitLab to
scale horizontally. Both extensibility and horizontal scaling are the types of quality attributes
that cause some organizations to consider a microservices architecture. Additionally, GitLab
themselves have made a point to emphasize their choice of a monolithic Ruby on Rails core
in contrast to microservices. (https://thenewstack.io/why-were-sticking-with-ruby-on-rails-
at-gitlab/) Considering all this, we believe a discussion of the tradeoffs between GitLab’s
microkernel architecture and microservices would be informative.

We begin by clarifying the distinction between microkernel and microservice
architectures. Though a microkernel pattern does make efforts to decouple the components
of an application they generally have the following features that contrast them to
microservices. Microkernels share a single core code repository and are deployed together
in the same package with included plug-ins, microservices are split among different
independent repository contexts and are deployed separately. Scaling a microkernel
generally requires scaling the entire app or the resources the app has access to. In other
words, scaling a microkernel typically involves vertical scaling. On the other hand, scaling
microservices can generally be done horizontally. Idealized microkernels are generally
compiled into a single executable which means that calls between components are function
calls rather than network calls like microservices.

Many of these features of microkernels obviously describe GitLab GCE as we have
described it, but some are less clear. For instance, the GCE Rails app runs four processes,
is each process a microservice? While GCE runs four processes, they all spawn from a single
process and use the same executable; So, no, the multiple processes do not make GCE a
microservice. But wasn’t it discussed in the use cases section that GCE allows resources
like Redis to be scaled horizontally and connected over the network? Yes, configuration
changes can be made to scale different storage components of GCE but processing
components do not scale horizontally. For instance, a second GitLab Puma cannot be added
without a new instance of GCE, and GitLab was designed to use a single PostgreSQL
instance for internal data management. The distinction between horizontally scaling
storage and processing is a key one. The simplicity of storage interfaces means that splitting
storage between different datastores is a far simpler process than splitting processing.
Furthermore, microservices are distinguished not just by the ability to add components but
the ability to swap them. GCE can add Redis instances but swapping Redis for an alternative
like memcached would require code changes to all the components that rely on Redisxxiv.

Now that the difference between microkernel and microservices is clear, let’s discuss
the tradeoffs between the two approaches. We have already mentioned one tradeoff,
components in a microkernel tend to be more tightly coupled because their interfaces
expose more of their internals to other components. As a result, changes to one component
more frequently require changes to another. The extent of coupling however is
implementation specific and even some microservice implementations can be very tightly
coupled. The second tradeoff is deployments, according to GitLab, they average 900

monthly commits to GCE and unless committed work is backing up, deploy about an equal
number (https://about.gitlab.com/blog/release-manager-the-invisible-hero/). That is a huge
number of changes and releasing them together accounts for the complexity and monthly
stress for release managers described in this article. Deploying microservices would limit
this massive coupling since each component would have its own dependencies however
because GCE is a self-managed application, upgrade tools would need to grow somewhat
more complex to manage the deployment of multiple packages to customers' environments.
A third major trade off is the speed of inter-component communication. Though we are not
certain to what extent this is the case for GitLab, microkernels are more likely to rely on
shared memory which avoids the latency hit of communicating over the network.

Limitations of GitLab Architecture

Scalability
A great starting place to discuss the limitations of GitLab’s Community Edition’s

chosen architecture style is GitLab.com. GitLab.com lets users host their code on GitLab’s
servers but it isn’t just a GCE instance that GitLab hosts. It is designed quite differently
because it was built to support millions of users. How different you might ask? GCE uses a
single Redis instance, while GitLab.com splits state into eleven Redis instances. GCE uses
a single PostgreSQL instance while GitLab.com uses Cloud SQL to create an auto-scaling
PostgreSQL HA cluster. GCE has a single Gitaly instance for Git storage, while GitLab.com
has a Gitaly Cluster with multiple shards. This means that my GitLab.com project code might
be stored on a different Gitaly instance than your GitLab.com project. Finally, GCE network
security relies on user configured firewall rules while GitLab.com uses Cloudflare. All this
scaling is supported by Kubernetes which orchestrates the container creation and service
discovery needed for each component to run in containerized workloads that auto-scale and
self-heal. The ultimate effect is that even though many of the components are shared,
gitlab.com has both higher availability and the ability to horizontally scale up or down
according to usage.

Addressing Possible Approaches to Solving Scalability
Achieving the same level of scalability on GCE would be difficult because GCE is built

for VMs not Kubernetes pods. For instance, GCE uses systemd to configure its components
as services and define service dependencies. New configurations would need to be created
if someone were to attempt to set up GCE on Kubernetes. However, some measure of
scalability can still be achieved within the original GCE architecture by manually configuring
highly available components. All the scaled components could follow a similar pattern, but
it should be noted that not all the features of Kubernetes could be achieved. For instance,
VMs can restart given a failure but individual apps cannot be restarted without additional
software like Kubernetes does. Ultimately, though scalability is possible for GCE, the high
degree of manual configuration means it is not a strong suit of the software.

Federated Model
Another limitation of GitLab GCE is that it sends very little data back to GitLab. The

only phone home it does is to send version data. This is certainly a feature because many
companies value the data protection that self-hosted GitLab provides them. But it is also a
limitation because data can help answer many questions about the product. For instance,
does the Gitaly service need to get restarted more often in the most recent version? Could a
UX change mean that fewer issues are being created per user in the newest version?

Addressing Possible Approaches to Solving Data Federation

Addressing this is straightforward but not necessarily desirable, GitLab could ask
users if they wish to send data back to GitLab to help improve the product. From there GitLab
could decide whether to ask for and users could decide whether to share more data like in
the “number of issues” example we gave above.

Appendix I: Case Study
 For hands-on experience with this research, a GCE was created in a home lab. To
learn the system and use the functionalities described in this document, we were able to
interact with the actual product and configure many of the described components. Having
come from developer backgrounds, and users of CI/CD platforms, we were generally
impressed with how much ground the application could cover as a single system.
 Our first task was to investigate the project management that GitLab provided. We
created git users for ourselves, as admins, and proceeded to create story cards that
developers would utilize to communicate business requirements into functional
requirements.

Figure 10 - Sample Kanban board Issue from GitLab

 Next, our task was to create a few services, starting with a Java Spring Boot starter
application. We used the Puma UI to generate the repository. The repository was a familiar
interface that gave us full git control of the code base.

Figure 11 - Sample Java SpringBoot Repository View

 Merged commits were made to the code base, invoking background job queues with
Redis, which created tasks to run on the pipeline. We registered a few logically tagged GitLab
Runner processes via GitLab Shell to operate on the pipeline tasks.

Figure 12 - Pipeline view of all runs

We were able to automate the pipeline tasks, including linting, unit testing, and even
deploying our compiled jar to a Kubernetes cluster.

Figure 13 - Build task output

Figure 14 - Individual pipeline view with task status

 Some analytics were available immediately regarding the pipeline, but this was a
highly configurable area within GitLab that we did not fully explore.

Figure 15 - Sample analytics showing pipeline run statistics

Appendix II: Proposals for Extension of Gitlab
GitLab has grown massively since it was first released in 2011. There are more

features and more developers than ever before and maintaining GitLab is far more complex
as a result. Managing this complexity within the context like a microkernel architecture is
restrictive and why we endorse introducing greater modularity into the GitLab core.

We examined a proposition from a pair of GitLab engineers that within, proposed that
the core GitLab Rails application begin to re-organize to a Modular Monolith for a variety of
reasonsxxv. The first is to provide a more isolated structure to the architecture and contain all
the features and components it offers into a logical grouping. It borrows concepts from
Domain Driven Design and specifically the idea of a bounded context to aid with the
distinction between modules. It is mentioned that modules that support external interfaces
(SideKiq, REST protocol, Web protocol, GraphQL and ActionCable) would be clearly
bounded as a port layer. Similarly, internal application domains are bounded and packaged
to decouple unnecessarily intertwined components. Strictly bounding layers and
components of the core GitLab Rails application will allow developers to think about fewer
components at a time, reducing complexity.

The hope is that this new architectural design allows integrators to work with a
smaller set of packages, due to the encapsulation of each domain that is created. They
mention other requirements such as having a small and well-documented public interface
provided by each domain, as well as the creation of a single-source-of-truth. This single-
source-of-truth brings obvious benefit to disparately integrated domains and further
promotes the bounded context which they desire.

The team mentioned challenges to this new adaptation, first beginning with the
change in mindset that development would need to overcome in order not to fall back on

past patterns. Greatly considered is the amount of development work needed to modularize
a domain. They mentioned the need for clear guidelines, which is validated by the
discussion on domain boundaries. Choices of what is in and what is not in a domain will
need to be made and likely at the very end of this, clearly documented interfaces need to be
defined for external domain access. This introduces of course the possibility of bad choices,
leading to further iterations. Their listed opportunities described a major benefit of this
change, that directly addressed our concerns with a system like GitLab. Instead of needing
an individual with knowledge of the entire system, it would be likely that experts could exist
within each domain. We are unanimously eager and waiting for results of the first iterations.
If this is successful, we expect GitLab to become more of an industry standard and
architectural example for other systems of its kind.

Appendix III: Evaluation of Architecture Risks and
Trade-offs

As we’ve explored GitLab in this report, it is evident that it is a feature-rich open-core
end-to-end software development platform. This open-core model creates trust because
developers can verify behavior and buy in because developers know the status of promised
new features.

While developers enjoy open source, the fact that anyone can pull request the GitLab
GCE means that responsibility for guarding against mistakes and malicious actors falls on
GitLab alone. If not managed to perfection, this often means an increased risk of
vulnerabilities. Not only are you trusting GitLab to thoroughly test all new code integrations,
but also the developers must follow a long list of guidelines when using GitLab’s features. In
addition, these updates and patches occur frequently, and attention must be given to ensure
the security of data.

 One such example of this was in 2023 when GitLab exposed the vulnerability CVE-2023-
7028, in which an HTTP request associated with GitLab Offers sends a password reset link
to an attacker-controlled email, allowing them to reset the password and access that
accountxxvi. It was not disclosed who made this change and whether the vulnerability was
malicious or a mistake (though this information is conceivably public record because GitLab
is open source we were unable to find a definitive answer). Regardless, GitLab is an obvious
candidate for adversarial states to attempt supply chain attacks that can bring down
important services. The ability to integrate the attack into the codebase of GitLab and
possibly the code bases of users is a massive opportunity for adversarial actors.

Another open source GitLab security concern emerges from the open-source code
repositories hosted on the GitLab platform. The attack works by adversarial actors hiding

phishing within Gitlab.com pull request comments and issuesxxvii. While this concern
primarily applies to GitLab.com not self-hosted GCE instances where all users are
authenticated by sources trusted by a company, GCE users are nonetheless likely to find
themselves browsing GitLab.com repositories and exposed to this risk.

Appendix IV: References

i GitLab 2025, GitLab CI YAML Instructions
https://docs.gitlab.com/ci/
ii GitLab 2025, GitLab Feature Flags
https://docs.gitlab.com/user/feature_flags/
iii GitLab 2025, Monitoring: Prometheus
https://docs.gitlab.com/administration/monitoring/prometheus/#sample-prometheus-queries
iv GitLab 2025, Transient Prevention Patterns
https://docs.gitlab.com/development/transient/prevention-patterns/#backend
v GitLab 2025, GitLab release and maintenance policy
https://docs.gitlab.com/policy/maintenance/
vi GitLab 2025, GitLab Shell Command.go
https://gitlab.com/gitlab-org/gitlab-shell/-/blob/main/cmd/gitlab-
shell/command/command.go?ref_type=heads
vii GitLab 2025 GitLab Shell Shell.go
https://gitlab.com/gitlab-org/gitlab-shell/-
/blob/main/internal/command/commandargs/shell.go?ref_type=heads
viii Prometheus 2025, Alert Manager
https://prometheus.io/docs/alerting/latest/alertmanager/
ix GitLab 2025, Prometheus Alert Manager
https://github.com/prometheus/alertmanager
x GitLab 2025, Shell
https://gitlab.com/gitlab-org/gitlab-shell
xi GitLab 2025, Workhorse
https://docs.gitlab.com/development/workhorse/
xii Grafana 2025, Grafana
https://grafana.com/
xiii GitLab 2025, Jaeger
https://github.com/jaegertracing/jaeger/blob/main/README.md
xiv Nginx 2025, Nginx
https://nginx.org/
xv GitLab 2025, Prometheus
https://github.com/prometheus/prometheus/blob/main/README.md
xvi GitLab 2025, Puma
https://gitlab.com/gitlab-org/gitlab/-/blob/master/README.md
xvii GitLab 2025, Redis
https://github.com/redis/redis/blob/unstable/README.md
xviii GitLab 2025, Runner
https://gitlab.com/gitlab-org/gitlab-runner/blob/main/README.md
xix GitLab 2025, Sentry
https://github.com/getsentry/sentry/
xx GitLab 2025, Sidekiq

https://github.com/sidekiq/sidekiq/blob/main/README.md
xxi GitLab 2025, Minio
https://github.com/minio/minio/blob/master/README.md
xxii GitLab 2025, Elastic Search
https://github.com/elastic/elasticsearch/?tab=readme-ov-file#readme
xxiii GitLab 2025, GitLab architecture overview.
https://docs.gitlab.com/ee/development/architecture.html
xxiv GitLab 2025 Architecture Component Details
https://docs.gitlab.com/development/architecture/#component-details
xxv GitLab 2024, Modular Monolith
https://handbook.gitlab.com/handbook/engineering/architecture/design-documents/modular_monolith/
xxvi The Register 2024, Vulnerability CVE-2023-7028
https://www.theregister.com/2024/05/02/critical_gitlab_vulnerability/
xxvii InfoSecWriteUps 2024, GitHub and GitLab Phishing
https://infosecwriteups.com/dont-trust-links-unveiling-hidden-phishing-threats-in-github-and-gitlab-
10bf47548248

	Introduction
	Purpose
	Scope
	Audience/Stakeholders

	Glossary of Terms
	Overview of Requirements
	Functional Requirements
	Organizational Process Requirements
	Control Requirements
	Flexibility Requirements

	Non-functional Requirements
	Modifiability
	Availability
	Integrability

	Use Cases
	CI/CD Deployment
	Scalability
	SSO Authentication

	Context Diagram
	System Quality Attributes
	Modifiability
	Availability
	Integrability
	Scalability
	Distributability/Deployability

	Quality Attribute Scenarios
	Modifiability Requirement (NFR2)
	Source
	Stimulus
	Artifacts
	Environment
	Response
	Response Measure
	Tactics to Satisfy Modifiability
	Component Replacement
	Configuration-Time Binding

	Availability Requirement (NFR3)
	Source
	Stimulus
	Artifacts
	Environment
	Response
	Response Measure
	Tactics to Satisfy Availability
	Detect Faults - Monitor, Heartbeat, Exception Detection
	Recover from Faults - Redundant Spare, Rollback, Exception Handling, Retry

	Integrability Requirement (NFR5)
	Source
	Stimulus
	Artifacts
	Environment
	Response
	Response Measure
	Tactics to Satisfy Integrability
	Limit Dependencies - Encapsulate, Use an Intermediary, Adhere to Standards

	High Level Architecture
	Key Components
	AlertManager (Prometheus Tool)
	Gitaly
	GitLab Shell
	GitLab Workhorse
	Grafana (Prometheus Output)
	Jaeger (Prometheus Input)
	NGINX
	PostgreSQL
	Prometheus
	Puma (Gitlab Rails)
	Redis
	Runner
	Sentry (Prometheus Input)
	Sidekiq

	GitLab High-Level Architecture Diagram
	Identification of Dominant Architectural Styles
	Core Component - Gitaly
	Core Component - Internal Data Management
	Core Component - Data Storage
	Core Component - Monitoring

	Explanation of Quality Attributes and Architectural Drivers Supported by the Architecture
	Contrasting GitLab Architecture with a Microservices Architecture

	Limitations of GitLab Architecture
	Scalability
	Addressing Possible Approaches to Solving Scalability
	Federated Model
	Addressing Possible Approaches to Solving Data Federation

	Appendix I: Case Study
	Appendix II: Proposals for Extension of Gitlab
	Appendix III: Evaluation of Architecture Risks and Trade-offs
	Appendix IV: References

